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ABSTRACT: We introduce a Plane-Spin-Rotator (PSR) model as one of a myriad of non-equilibrium statistical
mechanics models governed by stochastic dynamics. The system consists of a one-dimensional chain of
lattice sites in which each site is attached with a spin initially in the ordered state e.g., pointing in the same
direction. We incorporate the effects of a non-equilibrium phenomenon by giving the system a dynamics.
Namely we put a random walker (RW) or a Brownian agent at the origin or in the middle of the lattice chain
at the beginning and let it execute pure unbiased random walk to disorder i.e., to destroy the line up of the
spins. The local update rule whereby the system changes periodically from one state to another is that each

time step as the RW moves it has a certain probability to rotate the spin or change the angle @(x,t) between
the x-axis and the spin. We find the nontrivial statistics ®(x,t) of due to this and other simple stochastic

(Markovian type) model such as <COS (0, [)> and <sin o0, t)> do not behave in sinusoidal fashion as one

might expect. These functions and other can be calculated analytically exploiting the results from its “cousin”
model introduced in Physical Review E, Vol. 59, no. 5 p.5127. Excellent agreement from theoretical and
Monte Carlo computer simulation results is found.
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INTRODUCTION

Random walk or Brownian motion (continuous
limit counter part) is one of the fundamental processes
in nature. Originally observed in the jiggly irregular
motion of pollen grains suspended in water by the
English botanist Robert Brown, it was first cast into the
mathematical language by Einstein in 1905." Random
walk is one of the most studied problems and versatile
concepts in statistical physics. Reif? used random walk
to introduce many of the basic and essential concepts
of statistical mechanics, while Feller® utilized the same
subjects to illustrate the concepts of probability. To
physicists and mathematicians, random walk is a basic
paradigm in stochastic processes and is worthy of
many monographs. The most recent ones are those by
Weiss* and Hughes.” The theory of random walk has
attracted much theoretical attention over the past sixty
years due to its numerous applications in the physics,°
astronomy,” chemistry,® biological science,’ and even
social science.'® The reason for the multiple
connections between random walk and many
different questions of current and permanent interest
in science is the mathematics. A very rich field of

research has built up around the behavior of a random
walker (RW) interacting with an environment, a good
example being the diffusion of electrons in disordered
medium."" One can also consider the RW to be the
disordering agent in its environment.'*"

Thanks to the detailed studies of the data
corruption (DC) we found an interesting application
and have casted into the new model presented in this
paper. We shall call it the Plane-Spin-Rotator model
(PSR model). Briefly, this model consists of an RW in
one dimension lattice. Each lattice site element is
described by the spin lying in a plane like a clock or a
rotator, initially all pointing in the same direction. As
the RW wanders through, it has a certain probability
to rotate the spin or change the angle between the x-
axis and the spin direction, ®(x,t). The RW is not
affected by the environment in any way. Thus if we start
with a system in which all spins exist in the same state
(e.g. zero @O(x,t)) or the ordered initial configuration
and introduce the RW at origin x = 0, then after some
time, there will be a region around the origin in which
the elements will be found in the mixture of various
values of . An interesting question concerns the degree
of disordering which exists for elements within this
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region namely x-component cos(

) and y-
component sin( @(x,t)) (which are projections of the
spin on to the x and y axes,respectively). We find that
the statistics due to this such simple stochastic model
is nontrivial and can be derived analytically by
exploiting the results from DC.

The paper is organized as follows. In Section II, we
recap our previous work on DC. In Section III, we
define our model and discuss which quantities of
interest is to be investigated. We then turn to our
findings. In Section IV we calculate the predicted
analytic results obtained in the first subsection and
compare it with the detailed Monte Carlo in the
following subsection. Finally, we summarize and
present some comments and open questions.

RecAPITULATION

In this section we give a very brief review of the
main ideas and some of the results contained in DC
that will be of use in the present work. The process of
random walk in a binary medium is first modeled on a
hypercubic lattice of dimension d. A position of the

RW is denoted by a lattice vector R(t). In a time step

, the RW has a probability p to move to one of its 2d
nearest neighbor sites. In making such a jump, there
is a probability p that the element on the site will switch
to a new value. The elements are described by spin

variables o. (where T denotes a discrete lattice

vector) which may take the values (see Fig. 1). The
spin variables encode the information about the
disordering process. For example in the data
corruption process we label uncorrupted bits (of value
1) by spin +1 and corrupted bits (of value 0) by -1.
(We will often use the terms “magnetization density”
and “global magnetization”, which may be simply
translated to “density of disorder” and “total amount
of disorder”, respectively.)

We can define the dynamics via the probability
distribution which is the probability that at

time t, the RW is at position and the spins have
values given by the set . This distribution evolves
according to a master equation'* which takes the form

PR {o,}t+dt) =
A=A pg. T
+ 3 Zl: (R+ ,{cf},t)

Pq 5.7
+ =% PR+1,..,—0. ...t 1
zd; ( GRH )
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where {T} represents the  orthogonal lattice vectors

(which have magnitude I).

In DC an alternative continuum description was
obtained by viewing the process as a stochastic cellular
automaton (SCA)." The process is then defined in
terms of the position R(t) of the RW, and the coarse-
grained density of disorder (or magnetization density),
which is defined in a small region of space at a specific
time, is a functional of . In some sense, one may
view this in the same spirit as a Langevin description
of a stochastic process described at a more
fundamental level by a master equation. Taking the
continuum limit of this description yields a simple
Langevin equation for the position of the RW:

2

where &(t) is a noise term, each component of which
is an uncorrelated Gaussian random variable with zero
mean (i.e. is a white noise process). The correlator
of &(v)is given by

= Dg, 8(t—t) 3

Here and from now on, angled brackets indicate
an average over the noise (or equivalently the paths
of the RW). The RW is chosen to reside initially at the
origin: The evolution of the magnetization density @ is
described by

-- 4

This equation may be integrated to give the explicit
functional solution

o(F,0) = expl-A[dU A (F-R(")) 5

The above solution is obtained for an initial condition
¢(7,0) = 1 which we shall use exclusively. In terms of
the original lattice model, it corresponds to choosing
all the spins to have the initial value of +1, so that we
measure the subsequent disorder of the system by
counting the number of minus spins in the system.
In DC we only use the continuum description to
generate results for various average quantities. The
simplest quantity to consider is the mean
magnetization density for d=1 given by

m(E0) = (o(F,0)) = i(—w‘xn(x,o , 6

where x,(x,t) =1, and for n > 0,
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In DC, it can be shown that

. (%0 = jdrl]ldtz... Tdrng(o,rl -T,)...

where g(x,1) = (ZnDt) exp(—x* /2Dt) is the proba-
bility density of random walk. Due to the structure of
Eq (8) which is an n-fold convolution, we apply the
temporal Laplace transform and obtain for n>0

~ T —st 1~ n-l~
1. (x,9)= ‘[dte 1, (0= ;g(O,s) '5(x,3) 9
0

where
g(x,s) = 1 exp| — (ZSJ%M
s (2DS)% P D ' 10

where g(x,s) is the Laplace transform of diffusion
equation Green function. Summing over these function
as formulated in Eq. (6) we find

11

This exact result allows one to extract a great deal
of statistical information about the process. First, one
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xg(0,7,, —1,)g(x,1,) 8

want to stress that this is just the alternative method
of characterizing the evolution of the system other
than using the evolution of the probability distribution
of the configuration via the master equation. We start
by defining = =

as spin variable. Since we are
interested in how the angle @(x,t) changes with time
as the RW wandering through the lattice system, we
use the dynamics similar to that use in DC except now
the RW interacts with the lattice by rotating the spin
as the result of changing ®(x,t) (for d =1, see Fig.
2). The local update rule which causes the system to
change periodically from one state to another is that
each time step as the RW makes a random jump to
one of its (2d) nearest neighbors, the RW has a certain
probability (here p=1, q=1) to rotate the spin or change
the angle between the x-axis and the spin, d ®(x,t).
We write the local rules for the process in the spirit of
the SCA. The local rules for such process are easily
written down as

can simply invert the Laplace transform to find the R(t+80) =RO+10) 14
average magnetization density (or average density of 3
disorder relative to 1/2) as a function of T and t Explicit O, t+81) =00, +8, 15
forms are given in DC. For , the form is
%
| x| AMx] At t x|
,0) =erf — |+ +— |xerfc| | — | +

m(x,t) =er [(2])[)4} exp( D 2Dj er { (ZDJ (ZDI)%:I 12

where and erfc(z)are error function.?

Considering the long time behavior of the above
expression, we find that the average magnetization
density at the origin (x = Q) decays asymptotically as

(B peef2)] v

We note here that the continuum solution has the
important property that Z)(P(r G 7»)“>

This allows us to utilize the exact solution to
reconstruct the probability density for the
magnetization density.

MobkL

In this section we shall formulate the PSR model
using the continuum theory as in DC. Itis obvious as
we mention in DC that formulation using the discrete
theory and continuum theory is equivalent. We also

We are interested in a continuum limit of these two
rules. The first is nothing more than a random walk.
We take the lattice position R(t) to be a continuum
quantity, and we replace the random unit lattice
position 1(t) by continuum , which is an
uncorrelated Gaussian random variable (a white noise
process) reflecting the random process that has zero
configuration average or average over the noise (or
equivalent to the paths of RW).

(Ex,0)=0 16

The correlator or the second moment of the noise is
given by

<§ (x, t)é(x',t')> =Dd(x —x")d(t—t) 17

Relation (11) implies that the noise has no correlations
in space and time. Then, on taking §t — 0, equation
(10) assumes the form
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R_qo 18
de
which is the familiar equation for a continuum random
walk where D is the diffusion constant.' The second
SCA rule is more complicated to generalize to
continuum. Moving the first term over to the left-hand
side which may then be taken to be time derivative of
. The rest piece resembles a constant term
centered at x =R

0,0(x,0) = 19

where ) is a phenomenological parameter which
describes how strongly the spin is coupled to the RW.
We stress that the field @is a function of the
continuous space and time variables x and
t,respectively, and a function of the path R(t) of the RW.
As we pointed out in DC paper that this continuum
equation (15) is not strictly well derived from Eq. (11),
as we have not rigorously proved that the continuum
limit exists. In fact, we shall find that for , the
lattice scale is crucial, and consequently we must
soften the Dirac  function to a better defined sharply
peaked function.

However, from the following results we will see
good agreement between the data and the analytic
results to support our assumption.

Having shown a heuristic derivation of the
continuum theory based on the SCA for the case in
which the RW always moves, we proceed to the next
section in which we present a comprehensive solution
in one dimension.

ResuLts

In this section we will present some analytic results
and some detailed Monte Carlo simulation results.

Analytic results

Here, we are interested in solving Eq. (15) and
analyze how the angle @(x,t) evolves with time.
Thanks to the nature of the model, one of the positive
features of the continuum theory described by the Eq.
(15) is that one may immediately integrate the equation
to find as an explicit function of the path of the
RW. We first perform a dimensional analysis to be used
as a reference.

Letting L be the dimension of length and T be the
dimension of time, the dimensions of the significant
terms are

R]=L
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(2] 2T
=5 Ts=1
| D| T L
[xa]_ LT _|
D T
[Ixll_LT_,
| At TL

Next, we integrate Eq. (15), and get
Ox,0) = AfdU8(x—R(). 20
0

This solution requires the initial condition
0(x,0)=0. It is important to note here that O(x,t) is
non-negative for all x and t. To get the stochastic
properties that we want, we connect these results with
those in DC given in section 2. To do this, we set up
the solution to Eq. (16) as

Q(X, [) = <61®(x,1)> _ <€Xp|:17\,j- dt' 6(X - R(t' )):|> ) 21

We rewrite Eq. (5) as

<exp{— X;[ dt'8(x — R(t' ))}> _ erf{(leth);:| +

ex X|X|+& erch[[j%+ x|
P> " ) oyt | %2

where % isjust  (we use the new notation to avoid
confusion). Comparing Eq. (17) with Eq.(18) and
keeping in mind that for this case in d=1 dimension
A (f-R) can be replaced by delta function §(x —R).
The parameter % is now . The now takes
the form

[x]
e - gy |

ex —i>\,|X|_L2t erfc —i){t)% + x|
P7p " 20) ooyt | %3

Recalling the definition of Q(x,t), we note that

Re[Q(x, t)] = <cos(®(x, t))> 24-a,

Im[Q(x, t)] = <sin(®(x, t))> 24-b,

GHRs)
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where Re[Q(X,t)] and Im[Q(X,t)] are the real and imaginary part of Q(x,t) respectively. Applying the
trigonometric theorem, we get

) - rf{(lel) } exp{—g}{ms[ki}ﬂ]_iﬂn()‘:}x|)}.

JIx ) 2 ,;ij(*%d P ag X ), 2 7;7;‘%% EY
ooy ) V= ! pet sin B(th)% BN ! et o B( Dt)* 25

It is a straightforward matter after some rearrangement

x| At Alx| Ix|
X. = X - £
ool “{(zm)é}”{ m} o3k {@DMJ
- O{Mjie = w dBe m[ZB
n 0
[x]) 2 ;) '

7
) .

2B

After more simplification, we get

ik Ax| Ix[ )|, = AMx|
(6,0, t)>—e<§l(x V) =e cos( 5 )+erf[(2D[)%J {1 e cos( 5 ﬂ
2 2 "(ﬁ)%
zexp(—k[_x). j dBeﬁz Sil’l[}dX'—zB'Xllj

Jn 2D 2Dt) D (2Dt)* 27a
and
Ix| | - (7» | x Ij
o,(x,1)) = —erfc — |e * sin
(o260 ((2Dt)4J D
e ) p Ix| 2BIx]
+—=exp| ——-—— | _[ dBe” cos "
N 2D 2Dt) (2Dt)” 70
Considering the specific value of the above expression, we have, for x =0,
5 M)t
, 28a  and (,(0,0)=—— et . j dBe 28b

Since we wish to compare our analytic results with the Monte Carlo computer simulation results, we consider
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the two limits;

%(%y[l_g%Jro((%zﬂ !

Ov)=
00 %(%)%{1+%%+0((% )} P! 29

From Eq. (25), it can be show that <6 ,(0, t)> behaves differently for small and large time with a cross over which

can bze calculated as follows;
let, % =a’ we rewrite

2

(5,(0,0)) N e ~.:[d[36[jz ’ 30

The maximum value of the function can be obtained by differentiating with respect to a, and set it to zero, i.e.,

63<62(0,t)>‘a‘ =0=1-2a"e"" J‘dBeBZ 31
0
We get

1
(0,(00), . = air which is independent of ), and D. Using some trigonometric function identity, we can
show that

(o7 (x,1)) = (cos” O(x,1)) = %{1 +(cos (202x,1))) }

32
:%+%<01(X,t;2k> :
and
1 _22
(c20.0) = E(l _e j 32b
Again we focus on the value of the function at the origin, we have
<cf(0,t)> =l(l+e_%) 33a
2
(o30.0)= 3(1 —e*) 33b
2

We now turn to simulation results.

Monte Carlo Simulation Results

Our aim in this section is to show the validity of our theoretical results from the previous section. To do so,
we have performed Monte Carlo simulations of the discrete version model, defined in section 2. In all of the
simulations for which we present results, we have set the hopping rate p of the RW to unity. All of our results are
obtained for a one-dimensional chain of sites. The chain length is unimportant, so long as one ensures that the
RW never touches the edges in any of its realizations up to the latest time at which data is extracted. We perform
an average over 10° realizations (or runs). Such simulations require a few days on a DEC Alpha 233 MHz
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line with function 1.005¢ " and 2 = 0.9996

workstation. In a given run, the RW is moved left or
right with an equal probability at each time step and
the spin it left behind is rotated. Each run starts with
the same initial configuration; namely all spins are
pointed to the x-direction making zero degree with x-
axis.

In Fig 3 we show the numerical results of all the
means of trigonometric function of ®(2x ,t) at origin
namely , (sin®(O,1)), <cos ®(O,t)>, and
<sin2 @(O,t)> versus time. They all appear to have the
correct features as theoretically predicted. This
confirms the relations given in Eq. (28), Eq. (29), and
Eq. (33).

In Fig 4, we show the semi-log plot of (cos©(0,1))
vs. time. Due to the exponentially function feature as
analytically predicted it results in the straight line.
Using Excel program to do multiple regression, it
shows the good fit with the fitting function
1.005¢ >0t (r? = 0.9996). This emphasizes the
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agreement between the numerical data and Eq. (28)

In Fig 5, to verify the Eq. (29), we log-log plot of
the (sin®(0,1)) function versus time. The plot does
show two regimes with different power laws as
predicted. In the early regime the graph gives the
straight line with slope about 0.5 and the fitted function
0.0082t*** with r? = 0.9982, which is in good
agreement with predicted theory. With the cross-over
time about the time step 10,000 to 30,000, it turns into
another scaling law with another slope (predicted
slope =-0.5) as seen in later regime. Due to the problem
about the computing resources we now have, we
consequently did not perform simulation for the time
long enough to get the convincing data (at least one
and haft decade of power law or straight line).
Therefore from the data they only confirm the two
power law behaviors but not confirm the power law
of the later regime. Arguably, we did try to extrapolate
the curve to see roughly if its slope were -0.5. We
found that the slope could be -0.5. However, in the
near future we hope to get more powerful computers
to run for longer time with a lot of runs to get the nice
curve with the least noise.

It should also be mentioned about the lines
<cos2 ®(O,t)> and <sin2 ®(O,t)> . Early, they are
controlled by the exponential feature and
asymptotically approach to 0.5 afterward as predicted
by continuum theory. We end this section by
mentioning that the agreement between the numerical
data and the continuum theoretical results provides a
very strong evidence for the validity of our whole
continuum approach.

SummARY AND CONCLUSION

We have introduced and analyzed the PSR model
undergoing disordering, focusing on its stochastic
dynamics due to an RW (or a Brownian agent). In
section 2, we presented a review of our previous work
on DC and described what motivated us to study this
model. In section 3, we formulated the continuum
equations of our model by starting from the discrete
version in the spirit of stochastic cellular automata,
which consists of the RW rotating clocks (or spins) on
a lattice as it wanders. The model is non-trivial since
the value of ® depends sensitively on the path of the
RW i.e. how often the RW has visited the spins. The
continuum equation formulation of the PSR model has
similar feature as in the system which we used before
to describe the data corruption model in DC. In section
4, we examined the properties of the continuum
theory for d =1 . In the first subsection, we derived
an exact expression for the evolution of the x and y
component of the spin i.e., and
sin(®(x, 1)) . Using a fortuitous property of the original
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continuum theory in DC, we found that at the origin
the average of time variation of x-component for small
and large time have the following behavior. For the x-
component, it decreases exponentially to zero with the
characteristic time scale 2p/32. In contrast, the y-
component is proportional to /¢ for small times and
goes like 174/t for large time with the maximum
independent of the diffusive and the coupling
constant. We have calculated the next moment of both
quantities namely <cos2 ®(0,t)> and <sin2 ®(0,t)>. In
the second subsection, we presented our computer
experimental results from Monte Carlo simulations of
the discrete lattice model. We have measured the
temporal variation of all corresponding analytic results
predicted. In all cases we found good agreement
between our data and the theoretical predictions
arising from the continuum model.

In conclusion, we have introduced and solved a
model in which the RW interacts with a spin
environment. The benefit from this work is of course
the insight into one specific example of the stochastic
process mediated by a random or Brownian agent.
One can view this problem as the disordering process
starting from the initially ordered configuration and
the degree of disordering increase as time goes on due
to the dynamics or the local update rule applied. In
DC our primary application is to an environment
composed of bits of (two states) data, which the RW
steadily corrupts. We can apply our results to a system
characterized by more than two states. It remains to

vs. time to verify the power law behavior of the data. The inset shows the regression line of curve

be seen whether one can find a solid application of
the models. In the future work, we will explore cases
of two or more dimensions of agents or walker. There
are many future directions for future work, foremost
among which are (1) calculating all quantities in two
dimensional space (i) investigating two point an
autocorrelation functions in both one and two
dimensions (iii) studying many agents and more
generalized coupling to make a stronger connection
to real processes.
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